Posts

Showing posts with the label birthday

Who is older, Joe or Smoe?

Two friends, Joe and Smoe, were born in May, one in 1932, the other a year later. Each had an antique grandfather clock of which he was extremely proud. Both of the clocks worked fairly well considering their age, but one clock gained ten seconds per hour while the other one lost ten seconds per hour. 

On a day in January, the two friends set both clocks correctly at 12:00 noon. "Do you realize," asked Joe, "that the next time both of our clocks will show exactly the same time will be on your 47th birthday?" Smoe agreed. 

Who is older, Joe or Smoe?

Know who is older in the case! 

Who is older, Joe or Smoe?

"Smoe is older than Joe"


What was the puzzle?

Since one of the clock looses and other gains 10 seconds per hour, that means one looses 240 seconds (4 minutes) & other gains 240 seconds (4 minutes) in a day.

Both the clocks are set at 12:00 PM correctly. One has to gain 6 hours (360 minutes) and other has to loose 6 hours (360 minutes) to show the same time again. At the speed of 4 minutes per day the would need 360/4 = 90 days to show the same time again. 

On 90th day, they will come together to show 6:00. Exactly at 12 noon on 90th day one clock must be showing 6:00 PM and other must be showing 6:00 AM, if they have feature of showing AM/PM.

Now as per Joe it would be 47th birthday of Smoe on the day on which the clocks will show the same time. That means, the clocks are set correctly on the noon of 90 days prior to Smoe's birthday which is 1 May for sure but year yet to be known. 

If the year is leap year then 90th day before 1st May will be on 1st February and if it's not a leap year then it would be on January 31. Since, they have set their clocks correctly at 12:00 on some day in January, the year must not be a leap year. 

But if Smoe had been born in 1933, his 47th birthday would have been on May 1, 1980 which is leap year. Hence, Smoe must have born in 1932 and Joe in 1933.

Therefore, Smoe is older than Joe.

The story must be of 1979!

"Smoe is older than Joe"

Grandma's Birthday And Troll Toll

You are on your way to visit your Grandma, who lives at the end of the valley. It's her birthday, and you want to give her the cakes you've made.

Between your house and her house, you have to cross 7 bridges, and as it goes in the land of make believe, there is a troll under every bridge! Each troll, quite rightly, insists that you pay a troll toll. Before you can cross their bridge, you have to give them half of the cakes you are carrying, but as they are kind trolls, they each give you back a single cake.

How many cakes do you have to leave home with to make sure that you arrive at Grandma's with exactly 2 cakes?

Cakes For Grandma's Birthday


What's between you & grandma's birthday celebration? 

No need to overthink on this. Just carry 2 cakes.

At each toll they would take 1 ( half of 2 ) & would give back 1.

So after each toll you would carry 2 cakes & last toll wouldn't be an exception.

Number of Cakes For Grandma's Birthday!
Follow me on Blogarama