Posts

Showing posts with the label circular

Cars Around Interesting Circular Track

Around a circular race track are n race cars, each at a different location. At a signal, each car chooses a direction and begins to drive at a constant speed that will take it around the course in 1 hour. When two cars meet, both reverse direction without loss of speed. Show that at some future moment all the cars will be at their original positions.


Cars Around Interesting Circular Track

Analysing Interesting Circular Race Track


What was the interesting fact about?

Just imagine that each car carries a flag on it and on meeting pass on that flag to the next car. Obviously, this flag will move at the constant speed around the track as cars carrying it are also moving at the constant speed. So, the flag will be back at the original position after 1 hour.

Let's assume there are only 2 cars on the track at diagonally opposite points as shown below. 

Analysing Interesting Circular Race Track


After 15 minutes, on meeting with Car 2, Car 1 will pass on the flag & both will reverse their own direction. 30 minutes later (i.e. 45 minutes after start) both cars again meet each other and Car 2 will pass on flag back to Car 1 & directions are reversed again. Again in another 15 minutes (i.e. after 1 hour from start), both cars are back at the original positions. 

Now, let's suppose that there are 4 cars on the track positioned as below.

Analysing Interesting Circular Race Track


The above image shows how cars will be positioned after different points of time & how they reverse direction after meeting.

Again, all are back to the original position after 1 hour including the flag position. One more thing to note that the orders in which cars are never changes. It remains as 1-2-3-4 clockwise. 

To conclude, for 'n' number of cars, at some point of time all the cars will be in original positions in future.   
 

Complex Time, Speed & Distance Maths

There is a circular race-track of diameter 1 km. Two cars A and B are standing on the track diametrically opposite to each other. They are both facing in the clockwise direction. At t=0, both cars start moving at a constant acceleration of 0.1 m/s/s (initial velocity zero). Since both of them are moving at same speed and acceleration and clockwise direction, they will always remain diametrically opposite to each other throughout their motion.

At the center of the race-track there is a bug. At t=0, the bug starts to fly towards car A. When it reaches car A, it turn around and starts moving towards car B. When it reaches B, it again turns back and starts moving towards car A. It keeps repeating the entire cycle. The speed of the bug is 1 m/s throughout.

After 1 hour, all 3 bodies stop moving. What is the total distance traveled by the bug?

 What is the total distance traveled by the bug?

Simple Solution of Complex Problem


Here is that complex looking problem! 

Everything built, written or designed in the given problem is to distract you from basic physics formula.

Speed = Distance / Time

Hence,

Distance = Speed x Time 

All the details given except speed of bug & time for which it traveled are there to confuse you. Speed of bug is 1 m/s & it traveled for 1 hour = 3600 seconds.

Distance = 1 x 3600 = 3600 m

The problem based on pretty basic formula!

So the total distance traveled by the bug is 3600 m.

 
Follow me on Blogarama