Posts

Showing posts with the label meter

Puzzle : Ants Walk on a Stick

Twenty-five ants are placed randomly on a meter stick. Each faces east or west. At a signal they all start to march at 1 centimeter per second. Whenever two ants collide they reverse directions. How long must we wait to be sure that all the ants have left the stick?

This sounds immensely complicated, but with a simple insight the answer is immediately clear. What is it?

Ants Walk on a Stick


You need to wait for.....seconds only!
 

Analysing Ants Walk on a Stick


Read the question associated with the walk.

For a moment, let's assume that there are only 2 ants 20 cm away from either end of the stick. Now, after 30 seconds they both will collide with each other & will reverse the direction.

At 50th seconds they will be at the end of the sticks falling off the stick.

Analysing Ants Walk on a Stick

So after 80 seconds they will fall off the stick. Now, imagine if ants avoid collision & pass through (or above) each other. Still, both ants would need 80 seconds to leave the stick.


In short, 2 ants' collision & reversal in direction is equivalent to their passing through each other. The other ant continues the journey on the behalf of the first ant & vice versa.

And in case, if they were 100 cm apart, they would need 100 seconds to get off the stick. Again, after collision at halfway mark here, the other ant travels the rest of distance that other ant was supposed to travel.

Analysing Ants Walk on a Stick
On the similar note, we can say that even if there are 25 ants on the stick then each ant will cover some distance on the behalf of some other ant. And we need to wait for maximum 100 seconds if 1 of 25 ants is at the edge of the stick. 

All 25 ants together completes the journey of each others in 100 seconds. The ant which is at the edge of stick might complete journey of some other ant which might be only 10 seconds long. But the 100 seconds journey of that ant will be shared by rest of ants. 
Follow me on Blogarama