Posts

Showing posts with the label physics

How it Will Affect the Water Level?

A man stuck in a small sailboat on a perfectly calm lake throws a stone overboard. It sinks to the bottom of the lake.

When the water again settles to a perfect calm, is the water level in the lake higher, lower, or in the same place compared to where it was before the stone was cast in?


How it Will Affect the Water Level?


Did you think it will rise? 

Physics : Finding the Effect on the Water Level


But why water level was affected?

Do you recall what does Archimedes Principle state? For an object to float on water, it has to displace that much volume of water whose weight is equal to weight of the object itself. Now if object has less density than water then obviously it has to displace lesser amount of volume of water to float on it. That means it has to sink less in water.

For a moment, let's assume the stone has very high density & hence having weight equal to hundreds of kilograms despite of having small volume.

Here, stone sinks to the bottom of the lake suggests that it is has more density than water. It can't displace the water whose weight is equal to it's weight.But when it was on sailboat it could push the sailboat down so that more water is displaced weighing equal to it's weight. Result of this, the sailboat sinks little 'deeper' compared to when stone wasn't there.

Obviously, the volume of displaced water when stone was in sailboat (due to stone only) must be greater that the volume of displaced water when stone sinks to the bottom of the lake. That's why both sailboat and stone together could float on the water. In short, sailboat helped stone to displace amount of water needed to float which results in rise in shoreline.

And when stone is thrown out of the sailboat, then ideally it can't displace more water than when it was on sailboat. Now, sailboat sinks less 'deeper' in water displacing only water need to float itself. 



Physics : Finding the Effect on the Water Level


That's why the water level must be dropped compared to earlier. The little rise due to water displaced by stone can't exceed the earlier water level for the reason explained above.



Journey From Top To Ground

Galileo dropped balls of various weights from the top of the Leaning Tower of Pisa to refute an Aristotelian belief that heavier objects fall faster than lighter objects. 

If the balls were dropped from a height of 54 meters, how long did it take for the balls to hit the ground?

How does gravity affect on objects of different weights?

Click here to know the answer! 

Time Needed To Reach The Ground


What was the problem? 

To solve the problem, we need to remember what we have learned in our early days of school. The gravity of the earth accelerates the falling object at the rate of 9.8 meter per second square. We know, the kinematic equation,

s = ut + (1/2) a t^2   .......(1)

where,

s = distance covered,
u = initial velocity,
a = acceleration,
t = time taken to travel distance s.

In this case, initial velocity must be 0 as it is dropped from height 54m. Again height here is the distance covered by the object. And the acceleration in this case is nothing but the acceleration due to gravity which is 9.8 m/s^2.

So putting s = 54 m, u = 0 m/s, a = 9.8 m/s^2 in equation (1) above,

54 = 0 x t + (1/2) x 9.8 x t^2

54 = 4.9 t^2

t^2 = 11.021

t = 3.3 seconds. 

Objects need same time to reach the ground if....

So theoretically both balls should take 3.3 seconds to reach the ground. But resistance due to air will make the difference in time taken by balls to hit the ground. 
Follow me on Blogarama