Posts

A Visit To Grandmother's Home!

A father wants to take his two sons to visit their grandmother, who lives 33 kilometers away. His motorcycle will cover 25 kilometers per hour if he rides alone, but the speed drops to 20 kph if he carries one passenger, and he cannot carry two. Each brother walks at 5 kph

Can the three of them reach grandmother’s house in 3 hours?

A Visit To Grandmother's Home!


Do you think it's impossible? Click here!

Planning Journey Towards Grandmother's Home


What was the challenge in the journey?

Yes, all three can reach at grandmother's home within 3 hours. Here is how.

Let M be the speed of motorcycle when father is alone, D be the speed of motorcycle when father is with son and S is speed of sons.  Let A and B are name of the sons.

As per data, M = 25 kph, D = 20 kph, S = 5 kph.

1. Father leaves with his first son A while asking second son B to walk. Father and A drives for 24 km in 24/20 = 6/5 hours. Meanwhile, son B walks (6/5) x 5 = 6 km.

2. Now father leaves down son A for walking and drives back to son B. The distance between them is 24 -6 = 18 km.

Planning Journey Towards Grandmother's Home




3. To get back to son B, father needs 18/(M+S) = 18/(25+5) = 18/30 = 3/5 hours & in that time son B walks for another (3/5) x 5 = 3 km. Now, son B is 6 + 3 = 9 km away from source where he meets his father. While son A walks another (3/5) x 5 = 3 km towards grandmother's home.

Planning Journey Towards Grandmother's Home

4. Right now father and B are 24 km while A is 6 km away from grandmother's home. So in another 24/20 = 6/5 hours father and B drive to grandmother's home. And son B walks further (6/5) x 5 = 6 km reaching grandmother's home at the same time as father & brother B.

In this way, all three reach at grandmother's home in (6/5) + (3/5) + (6/5) = 3 hours.

Planning Journey Towards Grandmother's Home

In this journey, both sons walks for 9 km spending 9/5 hours and drives 24 km with father taking (6/5) hours. Whereas, father drives forward for 48 km (24 km + 24 km) in (6/5) + (6/5) hours and 15 km backward in 3/5 hours. 
  
Follow me on Blogarama