Posts

One More Alphamatic Problem?

In the following  puzzles, replace the same characters by the same numerals
so that the mathematical operations are correct.
               
Note - Each letter represents a unique digit and vice-versa.
 
ABCB - DEFC = GAFB
     :          +      -
  DH  x     AB =    IEI
---------------------------
 GGE + DEBB = DHDG
 
One More Alphanumeric Problem?
 
 
 
 
Here is the SOLUTION 
 
 

One More Alphamatic Solution!


Look at the problem first!

Rewriting the problem once again,

ABCB - DEFC = GAFB
   :         +       -
  DH x   AB    =    IEI
-------------------------
 GGE + DEBB = DHDG
 
We have 6 equations from above -
 
(1) A B C B - D E F C = G A F B  

(2) G G E + D E B B = D H D G  

(3) G A F B - I E I = D H D G 

(4) D E F C +  A B = D E B B 

(5) A B C B : D H  = G G E  

(6) D H x A B = I E I  

Steps :

1. From (1), we have B - C = B. That's possible only when C = 0.

2. If C = 0 then in (1), for tens' place subtraction i.e. C - F = F the carry need to 
    be taken from B. And that subtraction looks like 10 - F = F. Obviously, F = 5.

3. From (3), we see D in result seems to be carry and carry never exceeds 1 
    even if those numbers are 999 + 9999. So, D = 1. 
 
4. From (1), since C = 0, at hundreds' place (B - 1) - E = A and from (4),
    we have F + A = B (since first 2 digit of first numberremain same in result
    indicating no carry forwarded in addition of FC + AB = BB.
 
    So placing F = B - A in (B - 1) - E = A gives, F = E + 1. Since, F = 5, then E = 4. 
 
5. In (3), G at the thousands' place converted to D without actually subtraction 
    of digit from IEI. Since, G and D are different numbers some carry must have been
    taken from G.



    As D = 1 then G = 2.

6. From (1), A - D = G and D = 1 and G = 2 then A = 3 since if carry had been taken 
    from A then A = 4 which is impossible as we already have E = 4. 
 
7. From (2), E + B = G i.e. 4 + B = 2 only possible with B = 8.

8. With that, in (2), carry forwarded to  G + B = D making it 
    1 + G + B = 1 + 2 + 8 = 11 = 1D  i.e. carry 1 forwarded to G + E = H making it 
    1 + G + E = H = 1 + 2 + 4 = 7.
    Therefore, H = 7 and no carry forwarded as digit D in second number remains
    unchanged in result. 

9. Now (6) looks like - 17 x 38 = 646 = IEI = I4I. Hence, I = 6. 

 
To sum up,
 
A = 3, B = 8, C = 0, D = 1, E = 2, F = 5, G = 3, H = 7 and I = 6
 
One More Alphanumeric Solution!

 
Eventually, all above 6 equations after replacing digits in place of letters look - 

1. 3808 - 1450 = 2358  ✅
 
2. 224 + 1488 = 1712   ✅
 
3. 2358 - 646 = 1712   ✅
 
4. 1450 + 38 = 1488    ✅
 
5. 3808 : 17 = 224      ✅
 
6. 17 x 38 = 646         ✅  
 
Rewriting in the given format,

3808 - 1450 = 2358
      :         +       -
    17 x     38 =  646
-----------------------------
  224 + 1488 = 1712

Follow me on Blogarama