Posts

Count The Number of Arrangements

There are 10 parking spaces numbered from 101 to 110. At least one car is parked in these slots. If cars can be parked only at the consecutively numbered parking slots, how many such arrangements can be made. 

Consider that only one car can be parked in one parking slot and all cars are identical.

Count The Number of Arrangements

Here is the possible count! 

Possible Number of Arrangements


What was the puzzle?

Suppose there is only 1 car that is to be parked in 1 of the 10 slots. 

Number of possible arrangement = 10C1 = 10!/1!9 = 10.

That is 1 car can be parked in 10 slots in 10 number of ways.

Now, let's suppose that there are 2 cars that to be parked in 2 of the 10 parking slots. But the condition is that they need to be parked in consecutive slots. 

Among 10 slots for there are 9 possible consecutive slots for 2 cars. That is, 2 cars can be parked in consecutive slots in 9C1 = 9 number of ways. It's like placing 1 group of cars (having 2 cars) in 9 possible slots.

Similarly, in 10 parking slots for parking 3 cars there are 8 possible consecutive slots. Hence, there are 8 such arrangements are possible.

And so on for the rest number of cars.

Hence, there are total 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 55 such arrangements are possible.  


Possible Number of Arrangements

Follow me on Blogarama