Posts

The First Case of Mystery Number

There is a ten-digit mystery number (no leading 0), represented by ABCDEFGHIJ, where each numeral, 0 through 9, is used once

Given the following clues, what is the number?

1) A + B + C + D + E is a multiple of 6.


2) F + G + H + I + J is a multiple of 5.


3) A + C + E + G + I is a multiple of 9.


4) B + D + F + H + J is a multiple of 2.


5) AB is a multiple of 3.


6) CD is a multiple of 4.


7) EF is a multiple of 7.


8) GH is a multiple of 8.


9) IJ is a multiple of 10.


10) FE, HC, and JA are all prime numbers.


NOTE : AB, CD, EF, GH and IJ are the numbers having 2 digits and not product of 2 digits like A and B, C and D .....

First Case of Mystery Number


HERE is that MYSTERY number! 

Demystifying The First Mystery Number


What was the challenge?

Take a look at the clues given for identifying the number ABCDEFGHIJ.

-------------------------------------------------------------------------------

1) A + B + C + D + E is a multiple of 6.
 
2) F + G + H + I + J is a multiple of 5.

 
3) A + C + E + G + I is a multiple of 9.

 
4) B + D + F + H + J is a multiple of 2.

 
5) AB is a multiple of 3.

 
6) CD is a multiple of 4.

 
7) EF is a multiple of 7.

 
8) GH is a multiple of 8.

 
9) IJ is a multiple of 10.

 
10) FE, HC, and JA are all prime numbers.


-------------------------------------------------------------------------------

STEPS :  

-------------------------------------------------------------------------------

STEP 1 : Since, the digits in number ABCDEFGHIJ are from 0 to 9 with no repeat, the sum of all digits must be 0 + 1 + .....+ 9 = 45.

-------------------------------------------------------------------------------


STEP 2 : In first 2 conditions, it's clear that all digits of mystery number are added i.e. from A to J. However, addition of first 5 digits is multiple of 6 and addition of rest of digits is multiple of 5

That means the total addition of 45 must be divided into 2 parts such that one is multiple of 6 & other is multiple of 5.

30 and 45 is only pair that can satisfy these conditions. Hence,

A + B + C + D + E = 30.

F + G + H + I + J = 15.

-------------------------------------------------------------------------------

STEP 3 : In next 2 conditions, sums of digits at odd positions and even positions are listed. Moreover, the sum of digits at odd positions has to be multiple of 9 & that of at even positions need to be multiple of 2.

So again,  the total addition of 45 must be divided into 2 parts such that one is multiple of 9 & other is multiple of 2.

The only pair to get these conditions true is 27 and 18. Hence, 

A + C + E + G + I = 27.

B + D + F + H + J = 18.

-------------------------------------------------------------------------------

STEP 4 : As per condition 9, IJ is multiple of 10. For that, J has to be 0 and with that now 0 can't be anywhere else. J = 0. 

-------------------------------------------------------------------------------

STEP 5 : Since, one digit can be used only once, numbers like 11, 22, 33....are eliminated straightaway.

-------------------------------------------------------------------------------

STEP 6 : As per condition 10, JA is prime number. With J = 0, for JA to be prime number, A = 2, 3, 5, 7. 
-------------------------------------------------------------------------------
 

STEP 7 : As per condition 5, AB is a multiple of 3. 

Let's list out possible value of AB without any 0, possible digits of A = 2, 3, 5, 7 and excluding numbers having 2 same digits as -

  21, 24, 27, 36, 39, 51, 54, 57, 72, 75, 78. 

-------------------------------------------------------------------------------

STEP 8 : For numbers FE and HC to be prime (as per condition 10), C and E can't be 0, 5 or even.

-------------------------------------------------------------------------------

STEP 9 : As per condition 6, CD is multiple of 4 and as per condition 8, GH is multiple of 8. So, D and H has to be even digits.

-------------------------------------------------------------------------------

STEP 10 : As per condition 6, CD is a multiple of 4. So the possible values of CD without 0, with C not equal to 5 and with odd C, even D -

  12, 16, 32, 36, 72, 76, 92, 96. 

------------------------------------------------------------------------------- 

STEP 11 : As deduced in STEP 3 , B + D + F + H + J = 18.  

With J = 0 and D, H as even digits (STEP 9), both B and F has to odd or even to get to the even total of 18. 

If both of them are even then the total of 

B + D + F + H + J  = 2 + 4 + 6 + 8 + 0 = 20.

which is against our deduction.

Hence, B and F must be odd numbers. 

-------------------------------------------------------------------------------

STEP 12 : So, possible values of AB deduced in STEP 7 are revised with odd B as -

  21, 27, 39, 51, 57, 75.

-------------------------------------------------------------------------------

STEP 13 : As per condition 7, EF is a multiple of 7. With F as odd (STEP 11), along with E as odd, not equal to 5 (STEP - 8), possible value of EF are - 

  21, 49, 63, 91.

-------------------------------------------------------------------------------

STEP 14 : But as per condition 10, FE is PRIME number. Hence, the only possible value of EF from above step is 91. SO, E = 9 and F = 1.

-------------------------------------------------------------------------------

STEP 15 : Now after 1 and 9 already taken by F and E, possible value of AB in STEP 12 are again revised as - 27, 57, 75. And it's clear that either A or B takes digit 7. So 7 can't be used further.

-------------------------------------------------------------------------------

STEP 16 : So after 7 taken by A or B, E = 9, F = 1 possible values of CD deduced in STEP 10 are revised as - 32, 36.  Hence, C = 3.

-------------------------------------------------------------------------------

STEP 17 : With AB = 27, CD can't be 32. And if AB = 27, CD = 36 then,

A + B + C + D + E = 2 + 7 + 3 + 6 + D + 1 = 30.

D = 13.

This value of D is impossible.

Moreover, if CD = 32 and AB = 75 or 57, 

A + B + C + D + E = 5 + 7 + 3 + 2 + D + 1 = 30.

D = 12.

Again, this value of D is invalid. 

Hence, CD = 36 i.e. C = 3 and D = 6 and AB = 57 or 75 but not 27.

-------------------------------------------------------------------------------

STEP 18 : With AB = 57 or 75, CD = 36, EF = 91, J = 0, possible values of GH which is multiple of 8 (condition 8) are -  24, 48. 

That means either G or H takes 4. Or G is either 2 or 4.

-------------------------------------------------------------------------------

STEP 19 :  Now as deduced in STEP 3,

A + C + E + G + I = 27

A + 3 + 9 + G + I = 27

A + G + I = 15.
 
The letter G must be either 2 or 4 and A may be 5 or 7.

If A = 5, G = 4 then I = 6

If A = 7, G = 2 then I = 6

But we have D = 6 already, hence both of above are invalid.

If A = 7, G = 4 then I = 4.

Again, this is invalid as 2 letters G and I taking same digit 4.

Hence, A = 5, G = 2 is only valid combination thereby giving I = 8.

-------------------------------------------------------------------------------

STEP 20

If A = 5, then B = 7 ( STEP 17 ). 

C = 3, D = 6 ( STEP 17 ).

E = 9, F = 1 ( STEP 14).

If G = 2, then H = 4 ( STEP 18 & 19).

I = 8 (STEP 19), J = 0 ( STEP 4). 

------------------------------------------------------------------------------- 

CONCLUSION :

Hence, the mystery number ABCDEFGHI is 5736912480.

Demystifying The First Mystery Number

In the end, just to verify if the number that we have deduced is following all given conditions, 

1) 5 + 7 + 3 + 6 + 9 = 30 is  a multiple of 6.
2) 1 + 2 + 4 + 8 + 0 = 15 is a multiple of 5.
3) 5 + 3 + 9 + 2 + 8 = 27 is a multiple of 9.
4) 7 + 6 + 1 + 4 + 0 = 18 is a multiple of 2.
5) 57 is a multiple of 3.
6) 36 is a multiple of 4.
7) 91 is a multiple of 7.
8) 24 is a multiple of 8.
9) 80 is a multiple of 10.
10) 19, 43, and 05 are prime numbers.


Follow me on Blogarama