Posts

The Captain's Undeniable Proposal


What was the situation?  

He can keep 98 coins! Surprised? Read how.




Let's number 5 pirates as Pirate 5, Pirate 4.....Pirate 1 as per their descending order of seniority.

Pirate 5 keeps 98 coins with him and gives 1 coin each to Pirate 3 and Pirate 1.

Now Pirate 5 i.e Captain explains his decision -

CASE 1:


 If there were only 2 pirates then Pirate 2 would have taken all 100 coins after obtaining his own vote which accounts to 50% votes (50 % of 2 = 1).

CASE 2: 


 In case of 3 pirates, the Pirate 3 would have offered 1 coin to Pirate 1 & would have kept 99 coins with him. Now Pirate 1 wouldn't have any option other than agreeing on deal with Pirate 3. That's because if he doesn't agree then Pirate 3 would be eliminated & all coins would be with Pirate 2 as explained in above (case 1) of only 2 pirates. So votes of Pirate 1 and Pirate 3 which account to 66% (2 out of 3) votes of group locks this deal and Pirate 2 would be left without any coin.

CASE 3: 


 Now in case of 4 pirates, Pirate 4 would offer coin to Pirate 2 & would keep 99 coins with him. Now, Pirate 2 know what happens if Pirate 4 gets eliminated. Pirate 3 would offer 1 coin to Pirate 1 & will take away 99 coins. So Pirate 2 would definitely accept this deal. That's how votes of Pirate 4 and Pirate 2 makes 50% (2 out of 4) votes of group to pass the proposal. Pirate 3 and Pirate 1 can't do anything in this case.

By now, Pirate 3 and Pirate 1 realizes what happens of Pirate 5 gets eliminated. They won't be getting any coin if Pirate 4 becomes captain as explained above (case 3). So they have no option other than to vote for the proposal of Pirate 5. 


This way, Pirate 5, Pirate 3 and Pirate 1 (3/5 = 60% of crew) agree on proposal of Pirate 5 where he takes away 98 coins with 1 coin each to Pirate 3 and Pirate 1. 

'Morning Melange' - Puzzle

This morning, the popular Bay area cable access TV show, "Morning Melange", featured six guests (including Francine and Evan). Each guest lives in a different town in the region (including Corte Madera), and each has a different talent or interest that was the focus of his or her segment. The segments began at 6:45, 7:00, 7:15, 7:30, 7:45 and 8:00. 

Discover, for each time, the full name of the featured guest, where he or she lives and his or her special interest.
 
1. The first three guests were, in some order: the person surnamed Ivens, the person from Berkeley and the antique car collector.


2. Damien's segment was sometime before Lautremont's segment.


3. Krieger's segment began at 7:45.


4. Alice appeared after the person from Oakland and before the person surnamed Morley.


5. The people from Berkeley and Daly City aren't of the same sex.


6. The six guests were: Cathy, the person whose first name is Damien, the person whose last name is Novak, the person from Daly City, the person from Palo Alto and the bungee jumper.


7. The last name of the financial adviser is either Lautremont or Novak.


8. Jaspersen's segment began exactly 45 minutes after the beekeeper's segment.


9. The crepe chef went on sometime before the person from Sausalito and sometime after Brandon.


10. The hypnotherapist's segment began at 7:15.


HERE is SOLUTION! 

'Morning Melange' - Puzzle
Follow me on Blogarama