## Posts

Showing posts with the label mile

### Need of Speed For Average Speed

A man drives 1 mile to the top of a hill at 15 mph. How fast must he drive 1 mile down the other side to average 30 mph for the 2-mile trip?

Here is calculation of that speed needed!

### Impossible Average Speed Challenge

What was average speed challenge?

A man drives 1 mile to the top of a hill at 15 mph. That means he took, 1/15 hours i.e.4 minutes to reach at the top of a hill.

To achieve average speed of 30 mph, the man has to complete 2 miles trip in 1/15 hours i.e. 4 minutes. But he has already taken 4 minutes to reach at the top of a hill, hence he can't achieve average speed of 30 mph over entire trip.

MATHEMATICAL PROOF:

Let 'x' be the speed needed in the journey down the hill.

Average Speed = Total Distance/Total time

Average Speed = (1 + 1)/(1/15 + 1/x)

30 = 2/(1/15 + 1/x)

(1/15 + 1/x) = 2 / 30 = 1/15

1/x = 0

x = Infinity/Not defined.

To conclude, it's impossible to achieve average speed of 30mph in trip.

### Effect of Average Speed on Time

If a car had increased its average speed for a 210 mile journey by 5 mph, the journey would have been completed in one hour less. What was the original speed of the car for the journey?

Here is the calculation of averages speed!

### Calculation of the Original Speed!

What was the question?

Let S1 be the original speed and S2 be the modified speed and T1 be the time taken with speed S1 and T2 be the time taken with speed S2.

As per given data,

T1 - T2 = 1 hr.

D/S1 - D/S2 = 1 hr.

Here, D = 210 miles, S2 = S1 + 5,

210/S1 - 210/(S1+5) = 1

210(S1+5) - 210s = 1S1(S1+5)

S1^2 + 5S1 - 1050 = 0

(S1-30)(S1+35) = 0

S1 = 30 or S1 = -35.

Since speed can't be negative, S1 = 30 mph.

Hence, the original speed is 30 mph and average speed is 30 + 5 = 35 mph.

With the original speed it would have taken 210/30 = 7 hours but with average speed it took only 210/35 = 6 hours saving 1 hour of time.

### "Share The Walk; Share The Ride!"

You and I have to travel from Startville to Endville, but we have only one bicycle between us. So we decide to leapfrog: We’ll leave Startville at the same time, you walking and I riding. I’ll ride for 1 mile, and then I’ll leave the bicycle at the side of the road and continue on foot. When you reach the bicycle you’ll ride it for 1 mile, passing me at some point, then leave the bicycle and continue walking. And so on — we’ll continue in this way until we’ve both reached the destination.

Will this save any time?

You say yes: Each of us is riding for part of the distance, and riding is faster than walking, so using the bike must increase our average speed.

I say no: One or the other of us is always walking; ultimately every inch of the distance between Startville and Endville is traversed by someone on foot. So the total time is unchanged — leapfrogging with the bike is no better than walking the whole distance on foot.

Who’s right?

### "Okay, I'm Wrong in the Case!"

Where I went wrong?

That's going to save time for sure.

Let's assume that the distance between Startville and Endville is 2 miles. And suppose we walk at the same speed of 4 mph and ride bicycle at the speed of 12 mph.

Then I will travel for first 1 mile in 5 minutes leave the bicycle and start walking thereafter. You take 15 minutes to reach at the point to pick up bicycle and ride next mile. For next mile, I need 15 minutes as I am walking & you need only 5 minutes ride on bicycle. So exactly after 20 minutes we will reach at Endville.

And what if we had walked entire 2 miles distance? It would have taken 30 minutes for us to reach at the destination.

One thing you must have noticed, each of us walked for 1 mile only and ride on bicycle for other mile which saved 10 minutes of our journey. Imagine it as if we had 2 bicycles where we ride 1 mile in 5 minutes, leave bicycles and walk next mile in another 15 minutes.

So my argument in the case is totally wrong. It would have been correct if I had waited for you after finishing 1 mile ride on bicycle and then started to walk next mile.

In that case, you will reach at the destination in 20 minutes but I need 30 minutes as I wasted 10 minutes in middle.

Conclusion:

My argument -

"One or the other of us is always walking; ultimately every inch of the distance between Startville and Endville is traversed by someone on foot."

tells only half story.

Yes, ultimately every inch of the distance between Startville and Endville is traversed by someone on foot but the distance that each of us walk is equal though different parts of journey. And for the rest of distance we ride on bicycle where total time required for journey is saved.