Posts

MPSC मध्ये विचारला गेलेला प्रश्न

सोडवा गणित
तुम्ही एका यात्रेत आहत,
त्या यात्रेत तुम्हाला काही प्राणी खरेदी करायचे आहेत.त्या प्राण्यांची किमंत खालील प्रमाणे....
*१० रुपयाला - १ हत्ती
* १ रुपयाला - १ घोडा
* १ रुपयाला - ८ उंट
आणि तुमच्याकडे १०० रुपयेच आहेत.प्राण्याची संख्या १०० च आली पाहिजे.
वरील सगळे प्राणी घेणे बंधनकारक आहे.

कसे येतील.???

MPSC madhye vicharala gelela prashna




प्रश्न कठीण वाटतोय का ? उत्तरासाठी येथे क्लिक / टॅप करा.

👉  वाचा -  गोष्ट विषमासूर नावाच्या राक्षसाची !  

MPSC प्रश्नाचे उत्तर : यात्रेतील प्राणी खरेदी


जाणून घ्या काय होता प्रश्न ?

यात्रेमध्ये कोणता प्राणी किती किंमती मध्ये मिळतो ते पाहुयात.

* १० रुपयाला - १ हत्ती
* १ रुपयाला - १ घोडा
* १ रुपयाला - ८ उंट

म्हणजेच १ उंट १/८ रुपयांना मिळतो.

समजा आपण ' क्ष ' हत्ती, ' ' घोडे आणि ' ज्ञ ' उंट घेतले तर क्ष हत्तींची किंमत होईल १०क्ष, घोड्यांची किंमत होईल १य आणि ज्ञ उंट (१/८)ज्ञ रुपयांना पडतील. 

आपल्याजवळ १०० रुपये आहेत म्हणजे - 

१०क्ष + य + (१/८)ज्ञ = १००   ......... (१)

आणि आपल्याला एकूण १०० प्राणी घ्यायचे आहेत म्हणजेच -

क्ष + य + ज्ञ = १००

य = १०० - क्ष - ज्ञ          ....... (२)

समीकरण (२) हे (१) मध्ये टाकल्यानंतर,

१०क्ष + (१०० - क्ष - ज्ञ) + (१/८)ज्ञ = १००

९क्ष + १०० - ज्ञ + (१/८)ज्ञ = १००

९क्ष - (७/८)ज्ञ = ०

९क्ष = (७/८)ज्ञ 

क्ष/ज्ञ = ७/७२. 

याचाच अर्थ क्ष = ७ आणि ज्ञ = ७२ व म्हणूनच = १०० - क्ष - ज्ञ = १०० - ७ - ७२ = २१ असू शकतो.  


MPSC ganit prashnache uttar

म्हणजेच आपण ७० रुपयांचे हत्ती, २१ रुपयांचे २१ घोडे आणि रुपयांचे ७२ उंट खरेदी करायला हवेत जेणेकरून १०० रुपयांमध्ये १०० प्राण्यांची खरेदी पूर्ण होईल.  

एकूण खर्च = ७० + २१ + ९ = १००. 

एकूण प्राणी = ७ + २१ + ७२ = १००.  

One More Alphamatic Problem?

In the following  puzzles, replace the same characters by the same numerals
so that the mathematical operations are correct.
               
Note - Each letter represents a unique digit and vice-versa.
 
ABCB - DEFC = GAFB
     :          +      -
  DH  x     AB =    IEI
---------------------------
 GGE + DEBB = DHDG
 
One More Alphanumeric Problem?
 
 
 
 
Here is the SOLUTION 
 
 

One More Alphamatic Solution!


Look at the problem first!

Rewriting the problem once again,

ABCB - DEFC = GAFB
   :         +       -
  DH x   AB    =    IEI
-------------------------
 GGE + DEBB = DHDG
 
We have 6 equations from above -
 
(1) A B C B - D E F C = G A F B  

(2) G G E + D E B B = D H D G  

(3) G A F B - I E I = D H D G 

(4) D E F C +  A B = D E B B 

(5) A B C B : D H  = G G E  

(6) D H x A B = I E I  

Steps :

1. From (1), we have B - C = B. That's possible only when C = 0.

2. If C = 0 then in (1), for tens' place subtraction i.e. C - F = F the carry need to 
    be taken from B. And that subtraction looks like 10 - F = F. Obviously, F = 5.

3. From (3), we see D in result seems to be carry and carry never exceeds 1 
    even if those numbers are 999 + 9999. So, D = 1. 
 
4. From (1), since C = 0, at hundreds' place (B - 1) - E = A and from (4),
    we have F + A = B (since first 2 digit of first numberremain same in result
    indicating no carry forwarded in addition of FC + AB = BB.
 
    So placing F = B - A in (B - 1) - E = A gives, F = E + 1. Since, F = 5, then E = 4. 
 
5. In (3), G at the thousands' place converted to D without actually subtraction 
    of digit from IEI. Since, G and D are different numbers some carry must have been
    taken from G.



    As D = 1 then G = 2.

6. From (1), A - D = G and D = 1 and G = 2 then A = 3 since if carry had been taken 
    from A then A = 4 which is impossible as we already have E = 4. 
 
7. From (2), E + B = G i.e. 4 + B = 2 only possible with B = 8.

8. With that, in (2), carry forwarded to  G + B = D making it 
    1 + G + B = 1 + 2 + 8 = 11 = 1D  i.e. carry 1 forwarded to G + E = H making it 
    1 + G + E = H = 1 + 2 + 4 = 7.
    Therefore, H = 7 and no carry forwarded as digit D in second number remains
    unchanged in result. 

9. Now (6) looks like - 17 x 38 = 646 = IEI = I4I. Hence, I = 6. 

 
To sum up,
 
A = 3, B = 8, C = 0, D = 1, E = 2, F = 5, G = 3, H = 7 and I = 6
 
One More Alphanumeric Solution!

 
Eventually, all above 6 equations after replacing digits in place of letters look - 

1. 3808 - 1450 = 2358  ✅
 
2. 224 + 1488 = 1712   ✅
 
3. 2358 - 646 = 1712   ✅
 
4. 1450 + 38 = 1488    ✅
 
5. 3808 : 17 = 224      ✅
 
6. 17 x 38 = 646         ✅  
 
Rewriting in the given format,

3808 - 1450 = 2358
      :         +       -
    17 x     38 =  646
-----------------------------
  224 + 1488 = 1712

Ultimate Test of 3 Logic Masters

Try this. The Grand Master takes a set of 8 stamps, 4 red and 4 green, known to the logicians, and loosely affixes two to the forehead of each logician so that each logician can see all the other stamps except those 2 in the Grand Master's pocket and the two on her own forehead. He asks them in turn if they know the colors of their own stamps:

A: "No."


B: "No."


C: "No."


A: "No."


B: "Yes."


Ultimate Test of 3 Logic Masters

What color stamps does B have? 

'THIS' could be his color combination! 

Earlier logicians had been part of "Spot On The Forehead!" and  "Spot on the Forehead" Sequel Contest

The Wisest Logic Master!


What was the challenge in front of him?

Let's denote red by R and green by G. Then, each can have combination of RR, RG or GG.

So, there are total 27 combinations are possible.

1.  RR RR GG
2.  RR GG RR
3.  GG RR RR

4.  GG GG RR
5.  RR GG GG
6.  GG RR GG

7.  RR RG GG
8.  GG RG RR
9.  RG RR GG
10.RG GG RR
11. RR GG RG
12. GG RR RG

13. RR RG RG
14. GG RG RG
15. RG RR RG
16. RG GG RG
17. RG RG RR
18. RG RG GG

19. RR RR RG
20. GG GG RG
21. RG RR RR
22. RG GG GG
23. RR RG RR
24. GG RG GG

25. RR RR RR
26 .GG GG GG

27. RG RG RG.

-------------------------------------------------------------------------------------------------------------------------

1. Now, obviously (19) to (26) are invalid combinations as those have more than 4 red or green stamps.

------------------------------------------------------------------------------------------------------------------------- 

2. In first round, everybody said 'NO' thereby eliminating (1) to (6) combinations. That's because, for example, if C had seen all red (or all green) then he would have known color of own stamps as GG (or RR). Similarly, A and B must not have seen all red or all green.

-------------------------------------------------------------------------------------------------------------------------

3. For (9 - RG RR GG), A would have responded correctly at second round as NO of B had eliminated GG and NO of C had eliminated RR for A in first round. Similarly, (10) is eliminated.

------------------------------------------------------------------------------------------------------------------------- 

4. For (11 -  RR GG RG ), C would would have responded correctly immediately after NO of A had eliminated GG and NO of B had eliminated RR for him in first round. With similar logic, (12) also get eliminated.

------------------------------------------------------------------------------------------------------------------------- 

5. Remember, B has guessed color of own stamps only in second round of questioning.

------------------------------------------------------------------------------------------------------------------------- 

6. For B in (13), his logic would be I can't have RR (total R>4) but GG [ No.(11) - RR GG RG] and RG can be possible. But (11) is eliminated by C's response in first round. That leaves, (13) in contention.

------------------------------------------------------------------------------------------------------------------------- 

7. Similarly, if it was (14 - GG RG RG) combination, then B's thought would be - I can't have GG (total G>4) but can have RR as in (12) - GG RR RG which is already eliminated by C's NO response at the end of first round. Hence, I must have RG. That means (14) also remains in contention.

------------------------------------------------------------------------------------------------------------------------- 

8. On similar note, (17), (18) remains in contention after A's NO at the start of second round.

------------------------------------------------------------------------------------------------------------------------- 

9. If it was (15), then A would have been responded with RG when C's NO in first round eliminates RR (as proved in 2 above) and GG (as proved in 4 above) both. Similarly, (16) is also eliminated after C's NO in first round as above.

-------------------------------------------------------------------------------------------------------------------------

11. For (27), B's logic would be -

"If I had RR then A must had seen RR-RG and had logic - 

"Can't have RR (total R>4); if had GG then C would have answered with RG after I and B said NO in first round itself. Hence, I must tell RG in second round."

Similarly, A's response at the start of second round eliminates GG for me.

Hence, I must have RG combination."

-------------------------------------------------------------------------------------------------------------------------  

10. So only possible combinations left where only B can deduce color of own stamps are -

7.  RR RG GG
8.  GG RG RR

13. RR RG RG
14. GG RG RG

17. RG RG RR
18. RG RG GG

27. RG RG RG.

If observed carefully all above, we can conclude that B must have RG color combination of stamps after observing A's and C's stamps as above to correctly answer in the second round.


-------------------------------------------------------------------------------------------------------------------------

The Wisest Logic Master!


जावयाची अंगठीसाठी अजब मागणी

एकदा एक जावई 👲 आपल्या सासर्‍यांना फोन 📞 करतो की मी पुढील महिन्यात जेवण करायला घरी येईन, पण मी ज्या तारखेला येईन, तितके तोळे सोने मला पाहिजे.

नंतर सासरा एका सोनाराकडे गेला आणि त्यास सांगितले की 1 ते 31 तोळ्यापर्यंत अंगठ्या करून ठेव. माझा जावई ज्या दिवशी येईल, तितक्या तोळ्याची अंगठी मी घेऊन जाईन. पण सोनार हुशार होता. त्याने फक्त पाचच अंगठ्या केल्या.

त्या अंगठ्या कोणत्या आणि किती तोळ्यांच्या असतील...?

☎ 🎅🏻

वाचा सोनाराने काय शक्कल लढवली... 

Javayachi Angathisathi Ajab Magani


Follow me on Blogarama