Posts
Tricky Watermelon Water Weight Calculation
- Get link
- X
- Other Apps
What is the question?
Initially, since 99% of watermelon is water, the weight of water must be 99 pounds and weight of other stuffs should be 1 pound.
After evaporation, 98% of watermelon is water indicates that the there is 2% of other stuff present at the point of time.
That is, if we assume the weight of other stuff unchanged during evaporation, now 1 pound itself is equal to the 2% of total weight of watermelon.
In other words, the process of evaporation increased percent weight of other stuffs in total weight of watermelon from 1% to 2%.
If W is the total weight of watermelon, then weight of other stuffs (which is 1 pound)
W x (2/100) = 1 pound
W = 50 Pounds.
Out of these 50 pound, 1 pound (2% of total weight) is other stuffs and 49 pounds is water (98% of total weight).
That means, out of 99 pounds of water, 99 - 49 = 50 pounds of water is evaporated in the process.
गोष्ट विषमासूर नावाच्या राक्षसाची !
- Get link
- X
- Other Apps
विषमासूर नावाच्या
राक्षसाच्या समोर 1000 माणसे एका रांगेत उभी आहेत. त्या रांगेमधील विषम
क्रमांकावर [ उदा. 1,3,5,7,9 ] उभ्या असलेल्या सर्व लोकांना विषमासूर खावून
टाकतो.
त्या नंतर उरलेल्या माणसांची रांग शिल्लक राहते. आता त्या रांगेतील विषम क्रमांकाच्या माणसांना विषमासूर खावून टाकतो.
असे करत करत रांग लहान होत जाते आणि शेवटी एक माणूस शिल्लक राहतो. तर तो शिल्लक राहिलेला माणूस मूळ 1000 लोकांच्या रांगेत कितव्या क्रमांकावर उभा असेल ?
या क्रमांकावरील व्यक्ती शेवटी उरेल. पहा कोणता आहे तो क्रमांक!
त्या नंतर उरलेल्या माणसांची रांग शिल्लक राहते. आता त्या रांगेतील विषम क्रमांकाच्या माणसांना विषमासूर खावून टाकतो.
असे करत करत रांग लहान होत जाते आणि शेवटी एक माणूस शिल्लक राहतो. तर तो शिल्लक राहिलेला माणूस मूळ 1000 लोकांच्या रांगेत कितव्या क्रमांकावर उभा असेल ?
या क्रमांकावरील व्यक्ती शेवटी उरेल. पहा कोणता आहे तो क्रमांक!
विषमासुराच्या गोष्टीतील शेवटचा माणूस !
- Get link
- X
- Other Apps
काय बरं होती हि गोष्ट ?
समजा, त्या रांगेत फक्त १०च माणसे होती तर प्रत्येक फेरीनंतर वाचलेली माणसे या क्रमांकांवर असतील -
(१) २ ४ ६ ८ १०
(२) ४ ८
(३) ८
तर ८ व्या क्रमांकावरील व्यक्ती शेवटी उरेल.
आता त्या रांगेत ५० माणसे होती असे समजूयात.
(१) २ ४ ६ ८ १० १२ १४ १६ १८ २० २२ २४ २६ २८ ३० ३२ ३४ ३६ ३८ ४० ४२ ४४ ४६ ४८ ५०
(२) ४ ८ १२ १६ २० २४ २८ ३२ ३६ ४० ४४ ४८
(३) ८ १६ २४ ३२ ४० ४८
(४) १६ ३२ ४८
(५) ३२
म्हणजेच, ३२ क्रमांकावरील व्यक्ती शेवटी उरेल.
ही रांग आता १०० माणसांची होती असे समजूयात.
(१) २ ४ ६ ८ १० १२ १४ १६ १८ २० २२ २४ २६ २८ ३० ३२ ३४ ३६ ३८ ४० ४२ ४४ ४६ ४८ ५०
५२ ५४ ५६ ५८ ६० ६२ ६४ ६६ ६८ ७० ७२ ७४ ७६ ७८ ८० ८२ ८४ ८६ ८८ ९० ९२ ९४ ९६
९८ १००
(२) ४ ८ १२ १६ २० २४ २८ ३२ ३६ ४० ४४ ४८ ५२ ५६ ६० ६४ ६८ ७२ ७६ ८० ८४ ८८ ९२ ९६ १००
(३) ८ १६ २४ ३२ ४० ४८ ५६ ६४ ७२ ८० ८८ ९६
(४) १६ ३२ ४८ ६४ ८० ९६
(५) ३२ ६४ ९६
(६) ६४
या वेळी ६४ क्रमांकाचा व्यक्ती शेवटी राहील.
वरील तिन्ही उदाहरणे बारकाईने पाहिल्यास असे लक्षात येते कि शेवटी उडणाऱ्या व्यक्तीचा क्रमांक हा त्या एकूण क्रमांकांपैकी सर्वात मोठा २ चा घात (Biggest Power of 2) आहे. उदा. १ ते १० साठी ८, १ ते ५० साठी ३२ आणि १ ते १०० साठी ६४.
याचे कारण, अंतिमपूर्व फेरीमध्ये या क्रमांकाच्या निम्मा क्रमांकाचे प्रथम स्थानावर असणे होय जेणेकरून हा क्रमांक सम स्थानांवर उभा असेल. उदा. १ ते १० साठी ४,८ तसेच १ ते ५० साठी १६,३२ आणि १ ते १०० साठी ३२,६४.
याच तर्कानुसार आपण निष्कर्ष काढू शकतो कि, १००० माणसे रांगेत उभे असतील तर ५१२ क्रमांकाचा व्यक्ती शेवटी उरेल कारण ५१२ हाच २ चा सर्वात मोठा घात (Biggest Power of 2) आहे.
आणि समजा १०२५ माणसे रांगेत असती तर १०२४ क्रमांकाचा व्यक्ती शेवटी उरला असता.
अंतिम फेरीमध्ये मात्र हा व्यक्ती विषम स्थानावर (१) असेल आणि त्याचे काय करतो हे गोष्टींमध्ये नमूद केले नाही.
Plan The Best Chance of Winning!
- Get link
- X
- Other Apps
You are playing a game of dodge ball with two other people, John and
Tom. You're standing in a triangle and you all take turns throwing at
one of the others of your choosing until there is only one person
remaining. You have a 30 percent chance of hitting someone you aim at,
John has a 50 percent chance, and Tom a 100 percent change (he never
misses). If you hit somebody they are out and no longer get a turn.
If the order of throwing is you, John, then Tom; what should you do to have the best chance of winning?
This should be you plan to increase chances of winning!
If the order of throwing is you, John, then Tom; what should you do to have the best chance of winning?
This should be you plan to increase chances of winning!
Planning The Best Chance of Winning!
- Get link
- X
- Other Apps
What was the game?
You should miss the first shot for the purpose.
Remember, about one of your 3 shots (30% accuracy), John's 1 out of 2 shots (50% accuracy) and Tom's every shot is on target.
------------------------------------------------------------------------------------------
CASE 1 : If you target Tom and hit him then John has to hit you. Even if he fails to target you in first attempt he will be successful in his second attempt.
And since, your first shot was on target your next 2 has to be off the target one of which will give John a second chance.
------------------------------------------------------------------------------------------
CASE 2 : If you target John then Tom will certainly hit you to be winner of the game.
------------------------------------------------------------------------------------------
CASE 3 : Better miss the first shot and then 1 of next 2 shots will be on the target.
Now, John has to target Tom otherwise assuming John as stronger player, Tom will eliminate him immediately.
CASE 3.1 : If John hits Tom and eliminates him then it's your turn
now and John's next attempt has to be off the target.
So, even if you fail in first try after John's
unsuccessful try you can surely hit John in second try.
CASE 3.2 : And if John misses Tom then Tom will throw John
out of game in his first attempt. Now, it's your turn
and you can target Tom with 50% accuracy.
Angles on Christmas Tree in Puzzle!
- Get link
- X
- Other Apps
Four angels sat on the Christmas tree amidst other ornaments. Two had
blue halos and two - yellow. However, none of them could see above his
head.
Angel A sat on the top branch and could see the angels B and C, who sat below him. Angel B, could see angel C who sat on the lower branch. And angel D stood at the base of the tree obscured from view by a thicket of branches, so no one could see him and he could not see anyone either.
Which one of them could be the first to guess the color of his halo and speak it out loud for all other angels to hear?
THESE angels have maximum chance of correct guess!
Similar Puzzle
Angel A sat on the top branch and could see the angels B and C, who sat below him. Angel B, could see angel C who sat on the lower branch. And angel D stood at the base of the tree obscured from view by a thicket of branches, so no one could see him and he could not see anyone either.
Which one of them could be the first to guess the color of his halo and speak it out loud for all other angels to hear?
THESE angels have maximum chance of correct guess!
Similar Puzzle
Logical Angels on Christmas Tree
- Get link
- X
- Other Apps
How their logical skills are challenged?
Case 1 :
The angel A observes that the aureoles of B and C are of the same color. Then, A can be sure that the color of own aureoles must be other than that of B and C.
So, A will be the first to guess the correct color in case he observes 2 same colored aureoles B and C.
Case 2 :
The angle D notices that the color of aureoles of B and C are different. Now, A has to remain silent. The silence of A suggests B that the color of aureole of B must be different than the C.
So, in that case, B will be the first one to guess correct color of own aureole.
However, C has no chance to guess the color of own aureole unless, A or B reveals color of own aureole. And D has absolutely no chance of correct guessing the color of own aureole.
Will the Sheep Survive?
- Get link
- X
- Other Apps
Hundred tigers and one sheep are put on a magic island that only has
grass. Tigers can live on grass, but they want to eat sheep. If a Tiger
bites the Sheep then it will become a sheep itself. If 2 tigers attack a
sheep, only the first tiger to bite converts into a sheep. Tigers don’t
mind being a sheep, but they have a risk of getting eaten by another
tiger.
All tigers are intelligent and want to survive.
Will the sheep survive?
Survival chances of the sheep are - Click Here!
All tigers are intelligent and want to survive.
Will the sheep survive?
Survival chances of the sheep are - Click Here!
Survival Chances of the Sheep
- Get link
- X
- Other Apps
Why sheep is in danger?
First let's see what happens when there are different number of tigers present on
the island. Remember we are talking about survival of the sheep that is initially present n the island and not sheep converted from tiger.
1. Suppose there are only 1 tiger and 1 sheep on the island. Then, the tiger will eat
the sheep and won't have fear of being eaten up after transformation into sheep
as there is not tiger left.
The sheep will not survive.
2. Let's suppose there are 2 tigers and 1 sheep present. Each intelligent tiger can think -
----------------------------------------------------------------------------------------------------------
"If I eat a sheep then I will be converted into sheep and other tiger would eat me
as it would result into '1 tiger and 1 sheep' scenario above in (1).
So, I should not take risk"
----------------------------------------------------------------------------------------------------------
The sheep will be survived.
3. Now suppose there are 3 tigers and 1 sheep are on the island. Each tiger would think-
----------------------------------------------------------------------------------------------------------
"If I target the sheep and get converted into sheep itself then on the island there
would be 2 tigers and 1 sheep as above case (2).
As per that, none of other 2 tiger would dare to attack me and I would be
survived as a sheep in the end.
So better I should attack the sheep and anyhow I will be survived in the end as a
sheep"
----------------------------------------------------------------------------------------------------------
The sheep will not survive.
4. Finally, suppose there are 4 tigers and 1 sheep. Now, each tiger can put logic like - ----------------------------------------------------------------------------------------------------------
"If I attack the only sheep and get myself converted to sheep then this case
will be reduced to '3 tigers and 1 sheep' as in case (3).
In that case, the sheep has 0 chance of survival in the end.
That means, my life will be in danger as in above case (3), if I attack
this sheep toget converted into sheep. Better, I shouldn't attack"
----------------------------------------------------------------------------------------------------------
The sheep will be survived.
Conclusion :
If observed carefully, it can be concluded that the sheep will be survived when there are EVEN number of tigers (Case 2 and Case 4) are present. And obviously, will be in danger when there are ODD number of tigers present on the island.
In the given situation, there are 100 tigers on the island which is EVEN number. That means, as per above conclusion the only sheep on the island will be survived.
The Last Bean in the Pot
- Get link
- X
- Other Apps
A pot contains 75 white beans and 150 black ones. Next to the pot is a large pile of black beans.
A somewhat demented cook removes the beans from the pot, one at a time, according to the following strange rule:
He removes two beans from the pot at random. If at least one of the beans is black, he places it on the bean-pile and drops the other bean, no matter what color, back in the pot. If both beans are white, on the other hand, he discards both of them and removes one black bean from the pile and drops it in the pot.
At each turn of this procedure, the pot has one less bean in it. Eventually, just one bean is left in the pot. What color is it?
And the color of last bean is......
A somewhat demented cook removes the beans from the pot, one at a time, according to the following strange rule:
He removes two beans from the pot at random. If at least one of the beans is black, he places it on the bean-pile and drops the other bean, no matter what color, back in the pot. If both beans are white, on the other hand, he discards both of them and removes one black bean from the pile and drops it in the pot.
At each turn of this procedure, the pot has one less bean in it. Eventually, just one bean is left in the pot. What color is it?
And the color of last bean is......
The Color of Last Bean in the Pot
- Get link
- X
- Other Apps
Little story behind the title!
There are 75 WHITE beans in the pot i.e. they are odd in numbers. Since, they are always taken out in pair, in the end there will be 1 WHITE bean left out.
At some point, when there are 3 bean are left in the pot then there has to be 2 BLACK and 1 WHITE beans in the pot. They can't be 1 BLACK and 2 WHITE beans as for that 73 WHITE beans need to be taken out which is not possible since WHITE are always taken in pair.
So if cook pick 2 BLACK beans (or BLACK & WHITE) at this point then anyhow BLACK and WHITE will be left in the pot. Now, when he pick this pair of BLACK and WHITE then he puts BLACK on the pile and drop WHITE back to the pot as per his rule.
Eventually, WHITE bean will be left in the pot.
MPSC मध्ये विचारला गेलेला प्रश्न
- Get link
- X
- Other Apps
सोडवा गणित
तुम्ही एका
यात्रेत आहत,
त्या यात्रेत
तुम्हाला काही प्राणी खरेदी करायचे आहेत.त्या प्राण्यांची किमंत खालील प्रमाणे....
*१० रुपयाला - १
हत्ती
* १ रुपयाला - १
घोडा
* १ रुपयाला - ८
उंट
आणि तुमच्याकडे
१०० रुपयेच आहेत.प्राण्याची संख्या १०० च आली पाहिजे.
वरील सगळे प्राणी
घेणे बंधनकारक आहे.
कसे येतील.???
प्रश्न कठीण वाटतोय का ? उत्तरासाठी येथे क्लिक / टॅप करा.
👉 वाचा - गोष्ट विषमासूर नावाच्या राक्षसाची !
MPSC प्रश्नाचे उत्तर : यात्रेतील प्राणी खरेदी
- Get link
- X
- Other Apps
जाणून घ्या काय होता प्रश्न ?
यात्रेमध्ये कोणता प्राणी किती किंमती मध्ये मिळतो ते पाहुयात.
* १० रुपयाला - १
हत्ती
* १ रुपयाला - १
घोडा
* १ रुपयाला - ८
उंटम्हणजेच १ उंट १/८ रुपयांना मिळतो.
समजा आपण ' क्ष ' हत्ती, ' य ' घोडे आणि ' ज्ञ ' उंट घेतले तर क्ष हत्तींची किंमत होईल १०क्ष, य घोड्यांची किंमत होईल १य आणि ज्ञ उंट (१/८)ज्ञ रुपयांना पडतील.
आपल्याजवळ १०० रुपये आहेत म्हणजे -
१०क्ष + य + (१/८)ज्ञ = १०० ......... (१)
आणि आपल्याला एकूण १०० प्राणी घ्यायचे आहेत म्हणजेच -
क्ष + य + ज्ञ = १००
य = १०० - क्ष - ज्ञ ....... (२)
समीकरण (२) हे (१) मध्ये टाकल्यानंतर,
१०क्ष + (१०० - क्ष - ज्ञ) + (१/८)ज्ञ = १००
९क्ष + १०० - ज्ञ + (१/८)ज्ञ = १००
९क्ष - (७/८)ज्ञ = ०
९क्ष = (७/८)ज्ञ
क्ष/ज्ञ = ७/७२.
याचाच अर्थ क्ष = ७ आणि ज्ञ = ७२ व म्हणूनच य = १०० - क्ष - ज्ञ = १०० - ७ - ७२ = २१ असू शकतो.
म्हणजेच आपण ७० रुपयांचे ७ हत्ती, २१ रुपयांचे २१ घोडे आणि ९ रुपयांचे ७२ उंट खरेदी करायला हवेत जेणेकरून १०० रुपयांमध्ये १०० प्राण्यांची खरेदी पूर्ण होईल.
एकूण खर्च = ७० + २१ + ९ = १००.
एकूण प्राणी = ७ + २१ + ७२ = १००.
One More Alphamatic Problem?
- Get link
- X
- Other Apps
In the following puzzles, replace the same characters by the same numerals
so that the mathematical operations are correct.
Note - Each letter represents a unique digit and vice-versa.
ABCB - DEFC = GAFB
: + -
DH x AB = IEI
---------------------------
GGE + DEBB = DHDG
Here is the SOLUTION
One More Alphamatic Solution!
- Get link
- X
- Other Apps
Look at the problem first!
Rewriting the problem once again,
ABCB - DEFC = GAFB
: + -
DH x AB = IEI
-------------------------
GGE + DEBB = DHDG
We have 6 equations from above -
(1) A B C B - D E F C = G A F B
(2) G G E + D E B B = D H D G
(3) G A F B - I E I = D H D G
(4) D E F C + A B = D E B B
(5) A B C B : D H = G G E
(6) D H x A B = I E I
Steps :
1. From (1), we have B - C = B. That's possible only when C = 0.
2. If C = 0 then in (1), for tens' place subtraction i.e. C - F = F the carry need to
be taken from B. And that subtraction looks like 10 - F = F. Obviously, F = 5.
3. From (3), we see D in result seems to be carry and carry never exceeds 1
even if those numbers are 999 + 9999. So, D = 1.
4. From (1), since C = 0, at hundreds' place (B - 1) - E = A and from (4),
we have F + A = B (since first 2 digit of first numberremain same in result
indicating no carry forwarded in addition of FC + AB = BB.
So placing F = B - A in (B - 1) - E = A gives, F = E + 1. Since, F = 5, then E = 4.
5. In (3), G at the thousands' place converted to D without actually subtraction
of digit from IEI. Since, G and D are different numbers some carry must have been
taken from G.
As D = 1 then G = 2.
6. From (1), A - D = G and D = 1 and G = 2 then A = 3 since if carry had been taken
from A then A = 4 which is impossible as we already have E = 4.
7. From (2), E + B = G i.e. 4 + B = 2 only possible with B = 8.
8. With that, in (2), carry forwarded to G + B = D making it
1 + G + B = 1 + 2 + 8 = 11 = 1D i.e. carry 1 forwarded to G + E = H making it
1 + G + E = H = 1 + 2 + 4 = 7.
Therefore, H = 7 and no carry forwarded as digit D in second number remains
unchanged in result.
9. Now (6) looks like - 17 x 38 = 646 = IEI = I4I. Hence, I = 6.
To sum up,
A = 3, B = 8, C = 0, D = 1, E = 2, F = 5, G = 3, H = 7 and I = 6.
Eventually, all above 6 equations after replacing digits in place of letters look -
1. 3808 - 1450 = 2358 ✅
2. 224 + 1488 = 1712 ✅
3. 2358 - 646 = 1712 ✅
4. 1450 + 38 = 1488 ✅
5. 3808 : 17 = 224 ✅
6. 17 x 38 = 646 ✅
Rewriting in the given format,3808 - 1450 = 2358
: + -
17 x 38 = 646
-----------------------------
224 + 1488 = 1712
Ultimate Test of 3 Logic Masters
- Get link
- X
- Other Apps
Try this. The Grand Master takes a set of 8 stamps, 4 red and 4 green,
known to the logicians, and loosely affixes two to the forehead of each
logician so that each logician can see all the other stamps except those
2 in the Grand Master's pocket and the two on her own forehead. He asks
them in turn if they know the colors of their own stamps:
A: "No."
B: "No."
C: "No."
A: "No."
B: "Yes."
What color stamps does B have?
'THIS' could be his color combination!
Earlier logicians had been part of "Spot On The Forehead!" and "Spot on the Forehead" Sequel Contest
A: "No."
B: "No."
C: "No."
A: "No."
B: "Yes."
What color stamps does B have?
'THIS' could be his color combination!
Earlier logicians had been part of "Spot On The Forehead!" and "Spot on the Forehead" Sequel Contest
The Wisest Logic Master!
- Get link
- X
- Other Apps
What was the challenge in front of him?
Let's denote red by R and green by G. Then, each can have combination of RR, RG or GG.
So, there are total 27 combinations are possible.
1. RR RR GG
2. RR GG RR
3. GG RR RR
4. GG GG RR
5. RR GG GG
6. GG RR GG
7. RR RG GG
8. GG RG RR
9. RG RR GG
10.RG GG RR
11. RR GG RG
12. GG RR RG
13. RR RG RG
14. GG RG RG
15. RG RR RG
16. RG GG RG
17. RG RG RR
18. RG RG GG
19. RR RR RG
20. GG GG RG
21. RG RR RR
22. RG GG GG
23. RR RG RR
24. GG RG GG
25. RR RR RR
26 .GG GG GG
27. RG RG RG.
-------------------------------------------------------------------------------------------------------------------------
1. Now, obviously (19) to (26) are invalid combinations as those have more than 4 red or green stamps.
-------------------------------------------------------------------------------------------------------------------------
2. In first round, everybody said 'NO' thereby eliminating (1) to (6) combinations. That's because, for example, if C had seen all red (or all green) then he would have known color of own stamps as GG (or RR). Similarly, A and B must not have seen all red or all green.
-------------------------------------------------------------------------------------------------------------------------
3. For (9 - RG RR GG), A would have responded correctly at second round as NO of B had eliminated GG and NO of C had eliminated RR for A in first round. Similarly, (10) is eliminated.
-------------------------------------------------------------------------------------------------------------------------
4. For (11 - RR GG RG ), C would would have responded correctly immediately after NO of A had eliminated GG and NO of B had eliminated RR for him in first round. With similar logic, (12) also get eliminated.
-------------------------------------------------------------------------------------------------------------------------
5. Remember, B has guessed color of own stamps only in second round of questioning.
-------------------------------------------------------------------------------------------------------------------------
6. For B in (13), his logic would be I can't have RR (total R>4) but GG [ No.(11) - RR GG RG] and RG can be possible. But (11) is eliminated by C's response in first round. That leaves, (13) in contention.
-------------------------------------------------------------------------------------------------------------------------
7. Similarly, if it was (14 - GG RG RG) combination, then B's thought would be - I can't have GG (total G>4) but can have RR as in (12) - GG RR RG which is already eliminated by C's NO response at the end of first round. Hence, I must have RG. That means (14) also remains in contention.
-------------------------------------------------------------------------------------------------------------------------
8. On similar note, (17), (18) remains in contention after A's NO at the start of second round.
-------------------------------------------------------------------------------------------------------------------------
9. If it was (15), then A would have been responded with RG when C's NO in first round eliminates RR (as proved in 2 above) and GG (as proved in 4 above) both. Similarly, (16) is also eliminated after C's NO in first round as above.
-------------------------------------------------------------------------------------------------------------------------
11. For (27), B's logic would be -
"If I had RR then A must had seen RR-RG and had logic -
"Can't have RR (total R>4); if had GG then C would have answered with RG after I and B said NO in first round itself. Hence, I must tell RG in second round."
Similarly, A's response at the start of second round eliminates GG for me.
Hence, I must have RG combination."
-------------------------------------------------------------------------------------------------------------------------
10. So only possible combinations left where only B can deduce color of own stamps are -
7. RR RG GG
8. GG RG RR
13. RR RG RG
14. GG RG RG
17. RG RG RR
18. RG RG GG
27. RG RG RG.
If observed carefully all above, we can conclude that B must have RG color combination of stamps after observing A's and C's stamps as above to correctly answer in the second round.
-------------------------------------------------------------------------------------------------------------------------
जावयाची अंगठीसाठी अजब मागणी
- Get link
- X
- Other Apps
एकदा एक जावई 👲 आपल्या सासर्यांना फोन 📞 करतो की मी पुढील महिन्यात जेवण करायला घरी येईन, पण मी ज्या तारखेला येईन, तितके तोळे सोने मला पाहिजे.
नंतर सासरा एका सोनाराकडे गेला आणि त्यास सांगितले की 1 ते 31 तोळ्यापर्यंत अंगठ्या करून ठेव. माझा जावई ज्या दिवशी येईल, तितक्या तोळ्याची अंगठी मी घेऊन जाईन. पण सोनार हुशार होता. त्याने फक्त पाचच अंगठ्या केल्या.
त्या अंगठ्या कोणत्या आणि किती तोळ्यांच्या असतील...?
☎ 🎅🏻
वाचा सोनाराने काय शक्कल लढवली...
नंतर सासरा एका सोनाराकडे गेला आणि त्यास सांगितले की 1 ते 31 तोळ्यापर्यंत अंगठ्या करून ठेव. माझा जावई ज्या दिवशी येईल, तितक्या तोळ्याची अंगठी मी घेऊन जाईन. पण सोनार हुशार होता. त्याने फक्त पाचच अंगठ्या केल्या.
त्या अंगठ्या कोणत्या आणि किती तोळ्यांच्या असतील...?
☎ 🎅🏻
वाचा सोनाराने काय शक्कल लढवली...
सोनाराची हुशारी !
- Get link
- X
- Other Apps
काय होतं सोनारापुढे आव्हान ?
याचे उत्तर *द्विमान एकक पद्धतीमध्ये* (Binary Number System) वापर केल्यास सापडेल!
सोनाराने १६, ८, ४, २, १ तोळ्याच्या अंगठ्या केल्या असाव्यात.
आता खालील तक्ता पहा. 👇
उभ्या रकान्यात तारखा व आडव्या रकान्यांमध्ये अंगठ्यांचे वजन दिले आहे. (३२ च्या रकान्याकडे दुर्लक्ष करावे) ज्या तारखेला जावई येईल त्या तारखेचा आडवा रकाना पहावा. जिथे जिथे 1 असेल त्या त्या वजनाची अंगठी/अंगठ्या घ्याव्यात.
उदा.समजा जावई २१ तारखेला आला तर १६+४+१=२१ अशा अंगठ्या द्याव्यात। समजा तो ९ तारखेस आला तर ८+१=९ अशा अंगठ्या द्याव्यात।



















